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Definition
G is bi-orderable if it admits a strict total order such that for all f,g,h € G,

g<h = (fg<fh and gf <hf).
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EXAMPLES OF LEFT-ORDERABLE GROUPS

m Torsion-free Abelian groups are bi-orderable.
m Torsion-free nilpotent groups are bi-orderable (Malcev)

m Non-abelian free groups are bi-orderable. (Magnus)
E.g., ]FQ, Fg, c. Foo

m Fundamental groups of closed surfaces are left-orderable. (Magnus)

Counterexample

m Groups with torsion elements.
m Finite index subgroups of SL,,(Z) for n > 3 (Witte-Morris ’94).

m Irreducible lattices in a real semi-simple Lie group with finite center and real rank at
least two. (Deroin—Hurtado ’20+)
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Proposition

Suppose that K and H are left-orderable and that

1—>KL>GL>H—>1,

is a short exact sequence.
Then for any pair of left-orders < i and < we can define a left-order on G by

x <y = q(z) <g qly) or 1<git(z"ly).

The group G = (a,b | aba~! = b~1) is left-orderable as witnessed by

1— (a) 5 G -5 G/a) — 1.

However G is not bi-orderable.




CONRADIAN LEFT-ORDERS

Definition

A left-order <@ on the group G is Conradian if for every pair of positive elements g, h € G
there exists n > 0 such that g <g hg™.




CONRADIAN LEFT-ORDERS

Definition

A left-order <@ on the group G is Conradian if for every pair of positive elements g, h € G
there exists n > 0 such that g <g hg™.

Proposition

The following are equivalent:
m G admits a Conradian left-order;

m G islocally indicable, i.c.,




CONRADIAN LEFT-ORDERS

Definition

A left-order <@ on the group G is Conradian if for every pair of positive elements g, h € G
there exists n > 0 such that g <g hg™.

Proposition

The following are equivalent:
m G admits a Conradian left-order;

m G islocally indicable, i.e., for every finitely generated H < G there is an onto
homomorphism H — 7.




REFINING TORSION-FREENESS

BiO groups

CLO groups

torsion-free groups
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Proposition
G is left-orderable iff there is P C G such that

1. P is a subsemigroup of G;
2. G=PUPtU{1g}.

If < is a left-order on G then the positive cone P- = {g € G | 1¢ < g} satisfies 1 and 2.
Conversely, if P C G satisfies 1 and 2, then define a left-order on G by

g<ph < g 'heP O




THE SPACE OF LEFT-ORDERS OF (5

Proposition
G is left-orderable iff there is P C G such that

1. P is closed under multiplication;

2. G=PUPtU{1}.




THE SPACE OF LEFT-ORDERS OF (5

Proposition
G is left-orderable iff there is P C G such that

1. P is closed under multiplication;

2. G=PUPtU{1}.

Definition (Sikora '04; Ghys)

The space of left-orders on GG can be defined as

LO(G) := {P C G | P satisfies (1) and (2)}

m We regard LO(G) C 2¢ = {z | 2: G — {0,1}} with the subspace topology.



THE SPACE OF LEFT-ORDERS OF (5

Proposition
G is left-orderable iff there is P C G such that

1. P is closed under multiplication;

2. G=PUPtU{1}.

Definition (Sikora '04; Ghys)

The space of left-orders on GG can be defined as

LO(G) := {P C G | P satisfies (1) and (2)}

m We regard LO(G) C 2¢ = {z | 2: G — {0,1}} with the subspace topology.
m Since LO(G) is closed, it is a compact Polish subspace of 2¢.



THE CONJUGACY ACTION

The continuous conjugacy action G ~ LO(G) is defined by

g-P=g 'Pg.




THE CONJUGACY ACTION

The continuous conjugacy action G ~ LO(G) is defined by

g-P= g_ng.

Let Eio(G) be the conjugacy equivalence relation on LO(G):

PEo(G)Q < JgeG(g ' Pg=Q).




THE CONJUGACY ACTION

The continuous conjugacy action G ~ LO(G) is defined by

g-P=g'lPg.

Let Eio(G) be the conjugacy equivalence relation on LO(G):

PEo(G)Q < JgeG(g ' Pg=Q).

Eix(G) is a countable Borel equivalence relation (cber).

g
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Is there any left-orderable group G such that LO(G)/Eio(G) is not a standard Borel space?

Equivalently,
Is there any left-orderable group G such that E\,(G) is not smooth?

“Groups, Orders, and Dynamics” (2016)

Recall that F on X is smooth iff there is some Polish space Y and a Borel map ¢: X — Y
such that

tEy <= o) =0y).
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DESCRIPTIVE NECESSITY — LOCAL VS. GLOBAL

The spaces LO(Z?) and LO(FF3) are locally the same.

Theorem (Sikora 04; Navas ’10)

The spaces LO(Z?) and LO(F3) have no isolated points.

Only global properties of those spaces will show the extent to which they differ from each
other.
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STANDARD QUOTIENT

Theorem (C. - Clay ’23+)

If G is abelian-by-finite, then Ei,(G) is smooth.

Let A < G with A abelian and [G : A] =n < .
m Ifa € Aand P € LO(G), then a='Pa = P.

m Let {g1,...,9n} be a set of left coset representatives for A in G. It follows that
G-P={97'Pgi,.... 9. Pgn}. O

Does the converse hold?
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CONSEQUENCES OF GENERIC ERGODICITY

We assume:

m X is a compact Polish space.

m Let I' be any countable groups acting on X continuously.
Let £ be the equivalence relation induced on X by the I'-action.

Proposition
If there is a dense I'-orbit and every orbit is meager, then Elz( is not smooth.

If B is smooth, then
1. There must be xo € X with T - xq finite.

2. There is a subgroup N < T, :={g €T | g-xo = o} such that

N <T and[I': N] < o0.
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Corollary (C.-Clay 2022)

If G is not locally indicable then Ei,(G) is not smooth.

If Eio(G) is smooth then there is P € LO(G) such that G - P is finite. Let g € P (i.e.,
lg <p 9)-

m There isn € N so that g7"Pg" = P.

m For all positive h € P

g "hg" € P
lg <pg "hg
g<pg" <phg"

n

Therefore P is the positive cone of a Conradian left-order. 0l
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Corollary (C.-Clay ’22)
If G is not locally indicable then Ei,(G) is not smooth.

Corollary (C.—Clay ’23+)

If G has no non-trivial finite quotient (e.g., G is simple) and not bi-orderable, then Ei(G) is not
smooth.

Is there any locally indicable simple group that is not bi-orderable?
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Is there any locally indicable simple group that is not bi-orderable?

Theorem (Hyde-Lodha 2019)

There exist finitely generated not-biorderable simple groups.

Such groups cannot be locally indicable,...

...but, fortunately, we can find many examples of groups that are locally indicable, not
bi-orderable, and have no non-trivial finite quotients.
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FINDING NEW EXAMPLES

Suppose that G and H are simple, and C' is an infinite cyclic groups with injective
homomorphisms

¢g: C -G and o¢pg:C — H.

Then the free amalgamated product G xc H has no nontrivial finite quotient.

If G is bi-orderable, then for any g, h € G and m,n € Z we have

[g" A" =1 = [g,h] =1




Theorem (C.—Clay 2023+)
Suppose that G, H are locally indicable simple groups, and C' = (t) is an infinite cyclic
group.




Theorem (C.—Clay 2023+)

Suppose that G, H are locally indicable simple groups, and C' = (t) is an infinite cyclic
group.Fix nonidentity g € G, h € H and integers m,n > 1 and the injections

pa(t)=g™ and ép(t) = h"




Theorem (C.—Clay 2023+)

Suppose that G, H are locally indicable simple groups, and C' = (t) is an infinite cyclic
group.Fix nonidentity g € G, h € H and integers m,n > 1 and the injections

pa(t)=g™ and ép(t) = h"

Then G x¢ H is locally indicable, not bi-orderable, and admits no nontrivial finite
quotient.




Theorem (C.—Clay 2023+)

Suppose that G, H are locally indicable simple groups, and C' = (t) is an infinite cyclic
group.Fix nonidentity g € G, h € H and integers m,n > 1 and the injections

pa(t)=9g™ and ¢p(t)=h".

Then G x¢ H is locally indicable, not bi-orderable, and admits no nontrivial finite
quotient.

Example

It is well-known that the commutator subgroup F’ of Thompson’s group F is simple and
locally indicable (in fact, it is bi-orderable).

18



Theorem (C.—Clay 2023+)

Suppose that G, H are locally indicable simple groups, and C' = (t) is an infinite cyclic
group.Fix nonidentity g € G, h € H and integers m,n > 1 and the injections

pa(t)=9g™ and ¢p(t)=h".

Then G x¢ H is locally indicable, not bi-orderable, and admits no nontrivial finite
quotient.

Example

It is well-known that the commutator subgroup F’ of Thompson’s group F is simple and
locally indicable (in fact, it is bi-orderable).
Let K = F’ x¢ F”’ defined as above for some infinite cyclic group C.

18



Theorem (C.—Clay 2023+)

Suppose that G, H are locally indicable simple groups, and C' = (t) is an infinite cyclic
group.Fix nonidentity g € G, h € H and integers m,n > 1 and the injections

pa(t)=9g™ and ¢p(t)=h".

Then G x¢ H is locally indicable, not bi-orderable, and admits no nontrivial finite
quotient.

Example

It is well-known that the commutator subgroup F’ of Thompson’s group F is simple and
locally indicable (in fact, it is bi-orderable).

Let K = F’ x¢ F”’ defined as above for some infinite cyclic group C.

Eix(K) is not smooth.

18
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universal
Definition
E is universal if every cber is Borel reducible
to b.
There is a unique universal cber up to Borel
reducibility, denoted by F.
smooth
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Theorem (Dougherty—Jackson—Kechris ’94)

The shift action Fy ~ 22 induces a universal countable Borel equivalence.

Theorem (Velickovic-Thomas ’99; Gao ’00)

The conjugacy action Fy ~ Sub(IF2) induces a universal countable Borel equivalence relation.

Theorem (C.—Clay 2022)

Eix(F2) is a universal countable Borel equivalence relation.
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UNIVERSALITY OF FREE PRODUCTS

Theorem (Vinogradov ’49)
If G and H are left-orderable, then the free product G * H is left-orderable.

Theorem (C.—Clay 2023+)
If G and H are left-orderable groups, then E\,(G x H) is universal.

It uses the following:

Lemma (C.-Clay 2022)

If C' < G and C' is convex in some left-ordering of G and

forallge G ¢gCg'CC = geC,

then ElO(C) <B EIO(G)'
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FUNDAMENTAL GROUP OF 3-MANIFOLDS

Theorem (C.—Clay 2023+)

If M is (the complement of a) knot (excluding the trivial knot), then Ej, (71'1 (M)) is not
smooth.

We build a nonempty invariant closed subset of LO(71(M)) consisting of non-Conradian
left-orderings (whose orbits are necessarily infinite).
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OPEN QUESTIONS

Open question
Is there a left-orderable G such that Ey <p E},(G) <p Fw.

Open question
Are there G, H such that Ej,(G) and Ej,(H) are incomparable.

Open question

Is there G such that Ej,(G) is essentially free?
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