

THE BOREL COMPLEXITY OF THE SPACES OF LEFT-ORDERINGS

JOINT WITH A. CLAY (U MANITOBA)

FILIPPO CALDERONI

RUTGERS UNIVERSITY

Descriptive Set Theory & Dynamics August 21–25, 2023

1. Left-orderable groups

Let G be a countable group.

Let G be a countable group.

Definition

G is **left-orderable** if it admits a strict total order such that for all $f, g, h \in G$,

$$g < h \implies fg < fh.$$

Let ${\cal G}$ be a countable group.

Definition

G is **left-orderable** if it admits a strict total order such that for all $f, g, h \in G$,

$$g < h \implies fg < fh.$$

Definition

G is **bi-orderable** if it admits a strict total order such that for all $f, g, h \in G$,

$$g < h \quad \Longrightarrow \quad (fg < fh \quad \text{and} \quad gf < hf).$$

Example

■ Torsion-free Abelian groups are bi-orderable.

Example

- Torsion-free Abelian groups are bi-orderable.
- Torsion-free nilpotent groups are bi-orderable (Malcev)

Example

- Torsion-free Abelian groups are bi-orderable.
- Torsion-free nilpotent groups are bi-orderable (Malcev)
- Non-abelian free groups are bi-orderable. (Magnus)
 - E.g., $\mathbb{F}_2, \mathbb{F}_3, \ldots \mathbb{F}_\infty$.

Example

- Torsion-free Abelian groups are bi-orderable.
- Torsion-free nilpotent groups are bi-orderable (Malcev)
- Non-abelian free groups are bi-orderable. (Magnus)
 - E.g., $\mathbb{F}_2, \mathbb{F}_3, \ldots \mathbb{F}_\infty$.
- Fundamental groups of closed surfaces are left-orderable. (Magnus)

Example

- Torsion-free Abelian groups are bi-orderable.
- Torsion-free nilpotent groups are bi-orderable (Malcev)
- Non-abelian free groups are bi-orderable. (Magnus)
 - $\mathsf{E.g.}, \mathbb{F}_2, \mathbb{F}_3, \dots \mathbb{F}_{\infty}.$
- Fundamental groups of closed surfaces are left-orderable. (Magnus)

Counterexample

Groups with torsion elements.

Example

- Torsion-free Abelian groups are bi-orderable.
- Torsion-free nilpotent groups are bi-orderable (Malcev)
- Non-abelian free groups are bi-orderable. (Magnus) E.g., F₂, F₃,..., F_∞.
- Fundamental groups of closed surfaces are left-orderable. (Magnus)

- Groups with torsion elements.
- Finite index subgroups of $SL_n(\mathbb{Z})$ for $n \ge 3$ (Witte-Morris '94).

Example

- Torsion-free Abelian groups are bi-orderable.
- Torsion-free nilpotent groups are bi-orderable (Malcev)
- Non-abelian free groups are bi-orderable. (Magnus) E.g., F₂, F₃,..., F_∞.
- Fundamental groups of closed surfaces are left-orderable. (Magnus)

- Groups with torsion elements.
- Finite index subgroups of $SL_n(\mathbb{Z})$ for $n \ge 3$ (Witte-Morris '94).
- Irreducible lattices in a real semi-simple Lie group with finite center and real rank at least two. (Deroin-Hurtado '20+)

Propositi<u>on</u>

Suppose that K and H are left-orderable and that

$$1 \longrightarrow K \xrightarrow{i} G \xrightarrow{q} H \longrightarrow 1,$$

is a short exact sequence.

Proposition

Suppose that K and H are left-orderable and that

$$1 \longrightarrow K \xrightarrow{i} G \xrightarrow{q} H \longrightarrow 1,$$

is a short exact sequence.

Then for any pair of left-orders $<_K$ and $<_H$ we can define a left-order on G by

$$x < y \qquad \iff \qquad q(x) <_H q(y) \quad \text{or} \quad 1 <_K i^{-1}(x^{-1}y).$$

Proposition

Suppose that K and H are left-orderable and that

$$1 \longrightarrow K \stackrel{i}{\longrightarrow} G \stackrel{q}{\longrightarrow} H \longrightarrow 1,$$

is a short exact sequence.

Then for any pair of left-orders $<_K$ and $<_H$ we can define a left-order on G by

$$x < y \qquad \iff \qquad q(x) <_H q(y) \quad \text{or} \quad 1 <_K i^{-1}(x^{-1}y).$$

Example

The group $G = \langle a, b \mid aba^{-1} = b^{-1} \rangle$ is left-orderable as witnessed by

$$1 \longrightarrow \langle a \rangle \stackrel{i}{\longrightarrow} G \stackrel{q}{\longrightarrow} G / \langle a \rangle \longrightarrow 1.$$

However G is not bi-orderable.

Definition

A left-order $<_G$ on the group G is **Conradian** if for every pair of positive elements $g, h \in G$ there exists n > 0 such that $g <_G hg^n$.

Definition

A left-order $<_G$ on the group G is **Conradian** if for every pair of positive elements $g, h \in G$ there exists n > 0 such that $g <_G hg^n$.

Proposition

The following are equivalent:

- *G* admits a Conradian left-order;
- G is locally indicable, i.e.,

Definition

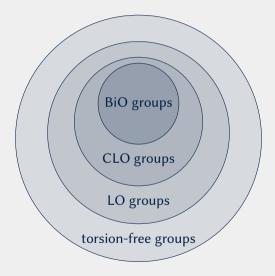
A left-order $<_G$ on the group G is **Conradian** if for every pair of positive elements $g, h \in G$ there exists n > 0 such that $g <_G hg^n$.

Proposition

The following are equivalent:

- *G* admits a Conradian left-order;
- *G* is **locally indicable**, *i.e.*, for every finitely generated $H \leq G$ there is an onto homomorphism $H \rightarrow \mathbb{Z}$.

REFINING TORSION-FREENESS



2. The space of left-orders

A USEFUL CHARACTERIZATION

Proposition

G is **left-orderable** iff there is $P \subseteq G$ such that

- 1. P is a subsemigroup of G;
- 2. $G = P \sqcup P^{-1} \sqcup \{1_G\}.$

A USEFUL CHARACTERIZATION

Proposition

G is **left-orderable** iff there is $P \subseteq G$ such that

- 1. P is a subsemigroup of G;
- 2. $G = P \sqcup P^{-1} \sqcup \{1_G\}.$

Sketch.

If < is a left-order on G then the **positive cone** $P_{\leq} = \{g \in G \mid 1_G < g\}$ satisfies 1 and 2.

A USEFUL CHARACTERIZATION

Proposition

G is **left-orderable** iff there is $P \subseteq G$ such that

- 1. P is a subsemigroup of G;
- 2. $G = P \sqcup P^{-1} \sqcup \{1_G\}.$

Sketch.

If < is a left-order on G then the **positive cone** $P_{\leq} = \{g \in G \mid 1_G < g\}$ satisfies 1 and 2. Conversely, if $P \subseteq G$ satisfies 1 and 2, then define a left-order on G by

$$g <_P h \iff g^{-1}h \in P.$$

The space of left-orders of ${\cal G}$

Proposition

G is **left-orderable** iff there is $P\subseteq G$ such that

- 1. *P* is closed under multiplication;
- 2. $G = P \sqcup P^{-1} \sqcup \{1\}.$

The space of left-orders of ${\cal G}$

Proposition

G is **left-orderable** iff there is $P \subseteq G$ such that

- 1. P is closed under multiplication;
- 2. $G = P \sqcup P^{-1} \sqcup \{1\}.$

Definition (Sikora '04; Ghys)

The **space of left-orders** on *G* can be defined as

 $LO(G) \coloneqq \{P \subseteq G \mid P \text{ satisfies (1) and (2)}\}\$

• We regard $LO(G) \subseteq 2^G = \{x \mid x \colon G \to \{0,1\}\}$ with the subspace topology.

The space of left-orders of G

Proposition

G is **left-orderable** iff there is $P \subseteq G$ such that

- 1. P is closed under multiplication;
- 2. $G = P \sqcup P^{-1} \sqcup \{1\}.$

Definition (Sikora '04; Ghys)

The **space of left-orders** on *G* can be defined as

 $\mathrm{LO}(G) \coloneqq \{ P \subseteq G \mid P \text{ satisfies (1) and (2)} \}$

- We regard $LO(G) \subseteq 2^G = \{x \mid x \colon G \to \{0,1\}\}$ with the subspace topology.
- Since LO(G) is closed, it is a **compact Polish subspace** of 2^G .

The continuous **conjugacy action** $G \curvearrowright \mathrm{LO}(G)$ is defined by

$$g \cdot P = g^{-1} P g.$$

The continuous **conjugacy action** $G \curvearrowright LO(G)$ is defined by

$$g \cdot P = g^{-1} P g$$

Let $E_{\mathsf{lo}}(G)$ be the **conjugacy equivalence relation** on $\mathrm{LO}(G)$:

$$P E_{\mathsf{lo}}(G) Q \iff \exists g \in G(g^{-1}Pg = Q).$$

The continuous **conjugacy action** $G \curvearrowright LO(G)$ is defined by

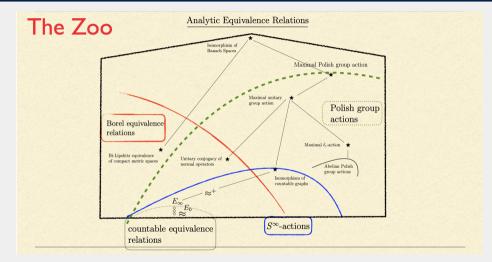
$$g \cdot P = g^{-1} P g$$

Let $E_{\mathsf{lo}}(G)$ be the **conjugacy equivalence relation** on $\mathrm{LO}(G)$:

$$P E_{\mathsf{lo}}(G) Q \iff \exists g \in G(g^{-1}Pg = Q).$$

 $E_{\mathsf{lo}}(G)$ is a countable Borel equivalence relation (cber).

MAP OF THE UNIVERSE



Courtesy of Matt Foreman

Question (Deroin, Navas, Rivas, Groups Orders Dynamics, 2016)

Is there any left-orderable group G such that $LO(G)/E_{lo}(G)$ is not a standard Borel space?

Question (Deroin, Navas, Rivas, Groups Orders Dynamics, 2016)

Is there any left-orderable group G such that $LO(G)/E_{lo}(G)$ is not a standard Borel space?

Equivalently,

Is there any left-orderable group G such that $E_{lo}(G)$ is **not smooth**?

"Groups, Orders, and Dynamics" (2016)

Question (Deroin, Navas, Rivas, Groups Orders Dynamics, 2016)

Is there any left-orderable group G such that $LO(G)/E_{lo}(G)$ is not a standard Borel space?

Equivalently,

Is there any left-orderable group G *such that* $E_{lo}(G)$ *is* **not smooth**?

"Groups, Orders, and Dynamics" (2016)

Recall that E on X is **smooth** iff there is some Polish space Y and a Borel map $\varphi\colon X\to Y$ such that

$$x E y \quad \iff \quad \varphi(x) = \varphi(y).$$

The spaces $LO(\mathbb{Z}^2)$ and $LO(\mathbb{F}_2)$ are locally the same.

The spaces $LO(\mathbb{Z}^2)$ and $LO(\mathbb{F}_2)$ are locally the same.

Theorem (Sikora 04; Navas '10)

The spaces $LO(\mathbb{Z}^2)$ and $LO(\mathbb{F}_2)$ have no isolated points.

The spaces $LO(\mathbb{Z}^2)$ and $LO(\mathbb{F}_2)$ are locally the same.

Theorem (Sikora 04; Navas '10)

The spaces $LO(\mathbb{Z}^2)$ and $LO(\mathbb{F}_2)$ have no isolated points.

Only global properties of those spaces will show the extent to which they differ from each other.

3. Some results about Borel complexity

Standard quotient

Theorem (C. – Clay '23+)

If G is abelian-by-finite, then $E_{lo}(G)$ is smooth.

Standard quotient

Theorem (C. – Clay '23+)

If G is abelian-by-finite, then $E_{\mathsf{lo}}(G)$ is smooth.

Sketch.

Let $A \leq G$ with A abelian and $[G:A] = n < \infty$.

Standard quotient

Theorem (C. – Clay '23+)

If G is abelian-by-finite, then $E_{\mathsf{lo}}(G)$ is smooth.

Sketch.

Let $A \leq G$ with A abelian and $[G:A] = n < \infty$.

• If $a \in A$ and $P \in LO(G)$, then $a^{-1}Pa = P$.

STANDARD QUOTIENT

Theorem (C. – Clay '23+)

If G is abelian-by-finite, then $E_{lo}(G)$ is smooth.

Sketch.

Let $A \leq G$ with A abelian and $[G:A] = n < \infty$.

- If $a \in A$ and $P \in LO(G)$, then $a^{-1}Pa = P$.
- Let $\{g_1, \ldots, g_n\}$ be a set of left coset representatives for A in G. It follows that $G \cdot P = \{g_1^{-1}Pg_1, \ldots, g_n^{-1}Pg_n\}.$

STANDARD QUOTIENT

Theorem (C. – Clay '23+)

If G is abelian-by-finite, then $E_{lo}(G)$ is smooth.

Sketch.

Let $A \leq G$ with A abelian and $[G:A] = n < \infty$.

• If $a \in A$ and $P \in LO(G)$, then $a^{-1}Pa = P$.

• Let $\{g_1, \ldots, g_n\}$ be a set of left coset representatives for A in G. It follows that $G \cdot P = \{g_1^{-1}Pg_1, \ldots, g_n^{-1}Pg_n\}.$

Question

Does the converse hold?

CONSEQUENCES OF GENERIC ERGODICITY

We assume:

• X is a compact Polish space.

Consequences of generic ergodicity

We assume:

- X is a compact Polish space.
- Let Γ be any countable groups acting on X continuously.

We assume:

- X is a compact Polish space.
- Let Γ be any countable groups acting on X continuously.

Let E_{Γ}^X be the equivalence relation induced on X by the Γ -action.

Consequences of generic ergodicity

We assume:

- X is a compact Polish space.
- Let Γ be any countable groups acting on X continuously.

Let E_{Γ}^X be the equivalence relation induced on X by the Γ -action.

Proposition

If there is a dense Γ -orbit and every orbit is meager, then E_{Γ}^X is not smooth.

We assume:

- X is a compact Polish space.
- Let Γ be any countable groups acting on X continuously.

Let E_{Γ}^X be the equivalence relation induced on X by the Γ -action.

Proposition

If there is a dense Γ -orbit and every orbit is meager, then E_{Γ}^X is not smooth.

Proposition

If E_{Γ}^X is smooth, then

- 1. There must be $x_0 \in X$ with $\Gamma \cdot x_0$ finite.
- 2. There is a subgroup $N \leq \Gamma_{x_0} \coloneqq \{g \in \Gamma \mid g \cdot x_0 = x_0\}$ such that

 $N \lhd \Gamma$ and $[\Gamma : N] < \infty$.

Corollary (C.–Clay 2022)

If G is not locally indicable then $E_{\mathsf{lo}}(G)$ is not smooth.

Proof.

If $E_{\mathsf{lo}}(G)$ is smooth then there is $P \in \mathrm{LO}(G)$ such that $G \cdot P$ is finite. Let $g \in P$ (i.e., $1_G <_P g$).

Corollary (C.–Clay 2022)

If G is not locally indicable then $E_{\mathsf{lo}}(G)$ is not smooth.

Proof.

If $E_{\mathsf{lo}}(G)$ is smooth then there is $P \in \mathrm{LO}(G)$ such that $G \cdot P$ is finite. Let $g \in P$ (i.e., $1_G <_P g$).

• There is $n \in \mathbb{N}$ so that $g^{-n}Pg^n = P$.

Corollary (C.-Clay 2022)

If G is not locally indicable then $E_{\mathsf{lo}}(G)$ is not smooth.

Proof.

If $E_{\mathsf{lo}}(G)$ is smooth then there is $P \in \mathrm{LO}(G)$ such that $G \cdot P$ is finite. Let $g \in P$ (i.e., $1_G <_P g$).

- There is $n \in \mathbb{N}$ so that $g^{-n}Pg^n = P$.
- $\bullet \ \, {\rm For \ all \ positive \ } h \in P$

 $g^{-n}hg^n \in P$

Therefore P is the positive cone of a Conradian left-order.

Corollary (C.-Clay 2022)

If G is not locally indicable then $E_{\mathsf{lo}}(G)$ is not smooth.

Proof.

If $E_{\mathsf{lo}}(G)$ is smooth then there is $P \in \mathrm{LO}(G)$ such that $G \cdot P$ is finite. Let $g \in P$ (i.e., $1_G <_P g$).

- There is $n \in \mathbb{N}$ so that $g^{-n}Pg^n = P$.
- $\bullet \ \, {\rm For \ all \ positive \ } h \in P$

 $g^{-n}hg^n \in P$ $1_G <_P g^{-n}hg^n$

Therefore ${\cal P}$ is the positive cone of a Conradian left-order.

Corollary (C.-Clay 2022)

If G is not locally indicable then $E_{\mathsf{lo}}(G)$ is not smooth.

Proof.

If $E_{\mathsf{lo}}(G)$ is smooth then there is $P \in \mathrm{LO}(G)$ such that $G \cdot P$ is finite. Let $g \in P$ (i.e., $1_G <_P g$).

- There is $n \in \mathbb{N}$ so that $g^{-n}Pg^n = P$.
- $\bullet \ \, {\rm For \ all \ positive \ } h \in P$

 $g^{-n}hg^n \in P$ $1_G <_P g^{-n}hg^n$ $g^n <_P hg^n$

Therefore ${\cal P}$ is the positive cone of a Conradian left-order.

Corollary (C.-Clay 2022)

If G is not locally indicable then $E_{\mathsf{lo}}(G)$ is not smooth.

Proof.

If $E_{\mathsf{lo}}(G)$ is smooth then there is $P \in \mathrm{LO}(G)$ such that $G \cdot P$ is finite. Let $g \in P$ (i.e., $1_G <_P g$).

- There is $n \in \mathbb{N}$ so that $g^{-n}Pg^n = P$.
- $\bullet \ \, {\rm For \ all \ positive \ } h \in P$

 $g^{-n}hg^n \in P$ $1_G <_P g^{-n}hg^n$ $g <_P g^n <_P hg^n$

Therefore ${\cal P}$ is the positive cone of a Conradian left-order.

Corollary (C.–Clay '22)

If G is not locally indicable then $E_{lo}(G)$ is not smooth.

Corollary (C.–Clay '22)

If G is not locally indicable then $E_{\mathsf{lo}}(G)$ is not smooth.

Corollary (C.–Clay '23+)

If G is simple and not bi-orderable, then $E_{lo}(G)$ is not smooth.

Corollary (C.-Clay '22)

If G is not locally indicable then $E_{\mathsf{lo}}(G)$ is not smooth.

Corollary (C.–Clay '23+)

If G is simple and not bi-orderable, then $E_{lo}(G)$ is not smooth.

Question

Is there any locally indicable simple group that is not bi-orderable?

Corollary (C.-Clay '22)

If G is not locally indicable then $E_{\mathsf{lo}}(G)$ is not smooth.

Corollary (C.–Clay '23+)

If G has no non-trivial finite quotient (e.g., G is simple) and not bi-orderable, then $E_{lo}(G)$ is not smooth.

Question

Is there any locally indicable simple group that is not bi-orderable?

Is there any locally indicable simple group that is not bi-orderable?

Is there any locally indicable simple group that is not bi-orderable?

Theorem (Hyde-Lodha 2019)

There exist finitely generated not-biorderable simple groups.

Is there any locally indicable simple group that is not bi-orderable?

Theorem (Hyde–Lodha 2019)

There exist finitely generated not-biorderable simple groups.

Such groups cannot be locally indicable,...

Is there any locally indicable simple group that is not bi-orderable?

Theorem (Hyde–Lodha 2019)

There exist finitely generated not-biorderable simple groups.

Such groups cannot be locally indicable,...

...but, fortunately, we can find many examples of groups that are locally indicable, not bi-orderable, and have no non-trivial finite quotients.

Lemma

Suppose that G and H are simple, and C is an infinite cyclic groups with injective homomorphisms

 $\phi_G \colon C \to G \quad and \quad \phi_H \colon C \to H.$

Lemma

Suppose that G and H are simple, and C is an infinite cyclic groups with injective homomorphisms

 $\phi_G \colon C \to G \quad and \quad \phi_H \colon C \to H.$

Then the free amalgamated product $G *_C H$ has no nontrivial finite quotient.

Lemma

Suppose that G and H are simple, and C is an infinite cyclic groups with injective homomorphisms

 $\phi_G \colon C \to G$ and $\phi_H \colon C \to H$.

Then the free amalgamated product $G *_C H$ has no nontrivial finite quotient.

Lemma

If G is bi-orderable, then for any $g,h\in G$ and $m,n\in \mathbb{Z}$ we have

 $[g^m, h^n] = 1 \implies [g, h] = 1$

Suppose that G, H are locally indicable simple groups, and $C = \langle t \rangle$ is an infinite cyclic group.

Suppose that G, H are locally indicable simple groups, and $C = \langle t \rangle$ is an infinite cyclic group. Fix nonidentity $g \in G$, $h \in H$ and integers m, n > 1 and the injections

$$\phi_G(t) = g^m$$
 and $\phi_H(t) = h^n$.

Suppose that G, H are locally indicable simple groups, and $C = \langle t \rangle$ is an infinite cyclic group. Fix nonidentity $g \in G$, $h \in H$ and integers m, n > 1 and the injections

$$\phi_G(t) = g^m$$
 and $\phi_H(t) = h^n$.

Then $G *_C H$ is locally indicable, not bi-orderable, and admits no nontrivial finite quotient.

Suppose that G, H are locally indicable simple groups, and $C = \langle t \rangle$ is an infinite cyclic group. Fix nonidentity $g \in G$, $h \in H$ and integers m, n > 1 and the injections

 $\phi_G(t) = g^m$ and $\phi_H(t) = h^n$.

Then $G *_C H$ is locally indicable, not bi-orderable, and admits no nontrivial finite quotient.

Example

It is well-known that the commutator subgroup F' of Thompson's group F is **simple** and **locally indicable** (in fact, it is bi-orderable).

Suppose that G, H are locally indicable simple groups, and $C = \langle t \rangle$ is an infinite cyclic group. Fix nonidentity $g \in G$, $h \in H$ and integers m, n > 1 and the injections

 $\phi_G(t) = g^m$ and $\phi_H(t) = h^n$.

Then $G *_C H$ is locally indicable, not bi-orderable, and admits no nontrivial finite quotient.

Example

It is well-known that the commutator subgroup F' of Thompson's group F is **simple** and **locally indicable** (in fact, it is bi-orderable).

Let $K = F' *_C F'$ defined as above for some infinite cyclic group C.

Suppose that G, H are locally indicable simple groups, and $C = \langle t \rangle$ is an infinite cyclic group. Fix nonidentity $g \in G$, $h \in H$ and integers m, n > 1 and the injections

 $\phi_G(t) = g^m$ and $\phi_H(t) = h^n$.

Then $G *_C H$ is locally indicable, not bi-orderable, and admits no nontrivial finite quotient.

Example

It is well-known that the commutator subgroup F' of Thompson's group F is **simple** and **locally indicable** (in fact, it is bi-orderable). Let $K = F' *_C F'$ defined as above for some infinite cyclic group C. $E_{lo}(K)$ is not smooth.

4. TIME PERMITTING...

The structure of cbers

Definition

 ${\cal E}$ is ${\bf universal}$ if every cber is Borel reducible to ${\cal E}.$

Definition

 ${\cal E}$ is ${\bf universal}$ if every cber is Borel reducible to ${\cal E}.$

There is a unique universal cber up to Borel reducibility, denoted by E_{∞} .

Theorem (Dougherty–Jackson–Kechris '94)

The shift action $\mathbb{F}_2 \curvearrowright 2^{\mathbb{F}_2}$ induces a universal countable Borel equivalence.

Theorem (Dougherty–Jackson–Kechris '94)

The shift action $\mathbb{F}_2 \curvearrowright 2^{\mathbb{F}_2}$ induces a universal countable Borel equivalence.

Theorem (Velickovic-Thomas '99; Gao '00)

The conjugacy action $\mathbb{F}_2 \curvearrowright Sub(\mathbb{F}_2)$ induces a universal countable Borel equivalence relation.

Theorem (Dougherty-Jackson-Kechris '94)

The shift action $\mathbb{F}_2 \curvearrowright 2^{\mathbb{F}_2}$ induces a universal countable Borel equivalence.

Theorem (Velickovic-Thomas '99; Gao '00)

The conjugacy action $\mathbb{F}_2 \curvearrowright Sub(\mathbb{F}_2)$ induces a universal countable Borel equivalence relation.

Theorem (C.-Clay 2022)

 $E_{\mathsf{lo}}(\mathbb{F}_2)$ is a universal countable Borel equivalence relation.

If G and H are left-orderable, then the free product G * H is left-orderable.

If G and H are left-orderable, then the free product G * H is left-orderable.

Theorem (C.-Clay 2023+)

If G and H are left-orderable groups, then $E_{lo}(G * H)$ is universal.

If G and H are left-orderable, then the free product G * H is left-orderable.

Theorem (C.-Clay 2023+)

If G and H are left-orderable groups, then $E_{lo}(G * H)$ is universal.

If G and H are left-orderable, then the free product G * H is left-orderable.

Theorem (C.–Clay 2023+)

If G and H are left-orderable groups, then $E_{lo}(G * H)$ is universal.

It uses the following:

Lemma (C.-Clay 2022)

If $C \leq G$ and C is convex in some left-ordering of G and

for all
$$g \in G$$
 $gCg^{-1} \subseteq C \implies g \in C$,

then $E_{\rm lo}(C) \leq_B E_{\rm lo}(G)$.

21

Theorem (C.–Clay 2023+)

If M is (the complement of a) knot (excluding the trivial knot), then $E_{lo}(\pi_1(M))$ is not smooth.

23

22

Theorem (C.–Clay 2023+)

If M is (the complement of a) knot (excluding the trivial knot), then $E_{lo}(\pi_1(M))$ is not smooth.

We build a nonempty invariant closed subset of $LO(\pi_1(M))$ consisting of non-Conradian left-orderings (whose orbits are necessarily infinite).

22

Open question

Is there a left-orderable G such that $E_0 \leq_B E_{\mathsf{lo}}(G) \leq_B E_{\infty}$.

Open question

Is there a left-orderable G such that $E_0 \leq_B E_{lo}(G) \leq_B E_{\infty}$.

Open question

Are there G, H such that $E_{lo}(G)$ and $E_{lo}(H)$ are incomparable.

Open question

Is there a left-orderable G such that $E_0 \leq_B E_{\mathsf{lo}}(G) \leq_B E_{\infty}$.

Open question

Are there G, H such that $E_{lo}(G)$ and $E_{lo}(H)$ are incomparable.

Open question

Is there G such that $E_{\mathsf{lo}}(G)$ is essentially free?

THANK YOU!