
The Borel complexity of the spaces of
left-orderings
joint with A. Clay (U Manitoba)

Filippo Calderoni

Rutgers University

Descriptive Set Theory & Dynamics
August 21–25, 2023



1. Left-orderable groups



Left-orderable groups

Let G be a countable group.

Definition
G is le�-orderable if it admits a strict total order such that for all f, g, h ∈ G,

g < h =⇒ fg < fh.

Definition
G is bi-orderable if it admits a strict total order such that for all f, g, h ∈ G,

g < h =⇒ (fg < fh and gf < hf).
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Examples of left-orderable groups

Example
Torsion-free Abelian groups are bi-orderable.

Torsion-free nilpotent groups are bi-orderable (Malcev)

Non-abelian free groups are bi-orderable. (Magnus)
E.g., F2,F3, . . .F∞.

Fundamental groups of closed surfaces are le�-orderable. (Magnus)

Counterexample

Groups with torsion elements.

Finite index subgroups of SLn(Z) for n ≥ 3 (Wi�e-Morris ’94).

Irreducible la�ices in a real semi-simple Lie group with finite center and real rank at
least two. (Deroin–Hurtado ’20+)
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Proposition

Suppose that K and H are le�-orderable and that

1 −→ K
i−→ G

q−→ H −→ 1,

is a short exact sequence.

Then for any pair of le�-orders <K and <H we can define a le�-order on G by

x < y ⇐⇒ q(x) <H q(y) or 1 <K i−1(x−1y).

Example

The group G = 〈a, b | aba−1 = b−1〉 is le�-orderable as witnessed by

1 −→ 〈a〉 i−→ G
q−→ G/〈a〉 −→ 1.

However G is not bi-orderable.
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Conradian left-orders

Definition
A le�-order <G on the group G is Conradian if for every pair of positive elements g, h ∈ G
there exists n > 0 such that g <G hgn.

Proposition
The following are equivalent:

G admits a Conradian le�-order;

G is locally indicable, i.e., for every finitely generated H ≤ G there is an onto

homomorphism H → Z.
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Refining torsion-freeness

torsion-free groups

LO groups

CLO groups

BiO groups
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2. The space of left-orders



A useful characterization

Proposition
G is le�-orderable i� there is P ⊆ G such that

1. P is a subsemigroup of G;

2. G = P t P−1 t {1G}.

Sketch.
If < is a le�-order on G then the positive cone P< = {g ∈ G | 1G < g} satisfies 1 and 2.

Conversely, if P ⊆ G satisfies 1 and 2, then define a le�-order on G by

g <P h ⇐⇒ g−1h ∈ P.

6 23
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The space of left-orders of G

Proposition
G is le�-orderable i� there is P ⊆ G such that

1. P is closed under multiplication;

2. G = P t P−1 t {1}.

Definition (Sikora ’04; Ghys)
The space of le�-orders on G can be defined as

LO(G) := {P ⊆ G | P satisfies (1) and (2)}

We regard LO(G) ⊆ 2G =
{
x | x : G→ {0, 1}

}
with the subspace topology.

Since LO(G) is closed, it is a compact Polish subspace of 2G.

7 23



The space of left-orders of G

Proposition
G is le�-orderable i� there is P ⊆ G such that

1. P is closed under multiplication;

2. G = P t P−1 t {1}.

Definition (Sikora ’04; Ghys)
The space of le�-orders on G can be defined as

LO(G) := {P ⊆ G | P satisfies (1) and (2)}

We regard LO(G) ⊆ 2G =
{
x | x : G→ {0, 1}

}
with the subspace topology.

Since LO(G) is closed, it is a compact Polish subspace of 2G.

7 23



The space of left-orders of G

Proposition
G is le�-orderable i� there is P ⊆ G such that

1. P is closed under multiplication;

2. G = P t P−1 t {1}.

Definition (Sikora ’04; Ghys)
The space of le�-orders on G can be defined as

LO(G) := {P ⊆ G | P satisfies (1) and (2)}

We regard LO(G) ⊆ 2G =
{
x | x : G→ {0, 1}

}
with the subspace topology.

Since LO(G) is closed, it is a compact Polish subspace of 2G.

7 23



The conjugacy action

The continuous conjugacy action Gy LO(G) is defined by

g · P = g−1Pg.

Let Elo(G) be the conjugacy equivalence relation on LO(G):

P Elo(G)Q ⇐⇒ ∃g ∈ G(g−1Pg = Q).

Elo(G) is a countable Borel equivalence relation (cber).

8 23
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Map of the universe

Courtesy of Ma� Foreman
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A question from GOD

�estion (Deroin, Navas, Rivas, Groups Orders Dynamics, 2016)

Is there any le�-orderable group G such that LO(G)/Elo(G) is not a standard Borel space?

Equivalently,
Is there any le�-orderable group G such that Elo(G) is not smooth?

“Groups, Orders, and Dynamics” (2016)

Recall that E on X is smooth i� there is some Polish space Y and a Borel map ϕ : X → Y
such that

x E y ⇐⇒ ϕ(x) = ϕ(y).
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Descriptive necessity — local vs. global

The spaces LO(Z2) and LO(F2) are locally the same.

Theorem (Sikora 04; Navas ’10)

The spaces LO(Z2) and LO(F2) have no isolated points.

Only global properties of those spaces will show the extent to which they di�er from each
other.

11 23
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3. Some results about Borel complexity



Standard quotient

Theorem (C. – Clay ’23+)

If G is abelian-by-finite, then Elo(G) is smooth.

Sketch.
Let A ≤ G with A abelian and [G : A] = n <∞.

If a ∈ A and P ∈ LO(G), then a−1Pa = P .

Let {g1, . . . , gn} be a set of le� coset representatives for A in G. It follows that
G · P = {g−1

1 Pg1, . . . , g
−1
n Pgn}.

�estion
Does the converse hold?

12 23



Standard quotient

Theorem (C. – Clay ’23+)

If G is abelian-by-finite, then Elo(G) is smooth.

Sketch.
Let A ≤ G with A abelian and [G : A] = n <∞.

If a ∈ A and P ∈ LO(G), then a−1Pa = P .

Let {g1, . . . , gn} be a set of le� coset representatives for A in G. It follows that
G · P = {g−1

1 Pg1, . . . , g
−1
n Pgn}.

�estion
Does the converse hold?

12 23



Standard quotient

Theorem (C. – Clay ’23+)

If G is abelian-by-finite, then Elo(G) is smooth.

Sketch.
Let A ≤ G with A abelian and [G : A] = n <∞.

If a ∈ A and P ∈ LO(G), then a−1Pa = P .

Let {g1, . . . , gn} be a set of le� coset representatives for A in G. It follows that
G · P = {g−1

1 Pg1, . . . , g
−1
n Pgn}.

�estion
Does the converse hold?

12 23



Standard quotient

Theorem (C. – Clay ’23+)

If G is abelian-by-finite, then Elo(G) is smooth.

Sketch.
Let A ≤ G with A abelian and [G : A] = n <∞.

If a ∈ A and P ∈ LO(G), then a−1Pa = P .

Let {g1, . . . , gn} be a set of le� coset representatives for A in G. It follows that
G · P = {g−1

1 Pg1, . . . , g
−1
n Pgn}.

�estion
Does the converse hold?

12 23



Standard quotient

Theorem (C. – Clay ’23+)

If G is abelian-by-finite, then Elo(G) is smooth.

Sketch.
Let A ≤ G with A abelian and [G : A] = n <∞.

If a ∈ A and P ∈ LO(G), then a−1Pa = P .

Let {g1, . . . , gn} be a set of le� coset representatives for A in G. It follows that
G · P = {g−1

1 Pg1, . . . , g
−1
n Pgn}.

�estion
Does the converse hold?

12 23



Consequences of generic ergodicity

We assume:
X is a compact Polish space.

Let Γ be any countable groups acting on X continuously.
Let EX

Γ be the equivalence relation induced on X by the Γ-action.

Proposition

If there is a dense Γ-orbit and every orbit is meager, then EX
Γ is not smooth.

Proposition

If EX
Γ is smooth, then

1. There must be x0 ∈ X with Γ · x0 finite.

2. There is a subgroup N ≤ Γx0
:= {g ∈ Γ | g · x0 = x0} such that

N C Γ and [Γ : N ] <∞.
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Non-standard

Corollary (C.–Clay 2022)

If G is not locally indicable then Elo(G) is not smooth.

Proof.
If Elo(G) is smooth then there is P ∈ LO(G) such that G · P is finite. Let g ∈ P (i.e.,
1G <P g).

There is n ∈ N so that g−nPgn = P .

For all positive h ∈ P

g−nhgn ∈ P

Therefore P is the positive cone of a Conradian le�-order.
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Corollary (C.–Clay ’22)

If G is not locally indicable then Elo(G) is not smooth.

Corollary (C.–Clay ’23+)

If G is simple and not bi-orderable, then Elo(G) is not smooth.

�estion
Is there any locally indicable simple group that is not bi-orderable?
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Corollary (C.–Clay ’22)

If G is not locally indicable then Elo(G) is not smooth.

Corollary (C.–Clay ’23+)

If G has no non-trivial finite quotient (e.g., G is simple) and not bi-orderable, then Elo(G) is not

smooth.

�estion
Is there any locally indicable simple group that is not bi-orderable?
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�estion
Is there any locally indicable simple group that is not bi-orderable?

Theorem (Hyde–Lodha 2019)
There exist finitely generated not-biorderable simple groups.

Such groups cannot be locally indicable,...

...but, fortunately, we can find many examples of groups that are locally indicable, not
bi-orderable, and have no non-trivial finite quotients.
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Finding new examples

Lemma
Suppose that G and H are simple, and C is an infinite cyclic groups with injective

homomorphisms

φG : C → G and φH : C → H.

Then the free amalgamated product G ∗C H has no nontrivial finite quotient.

Lemma
If G is bi-orderable, then for any g, h ∈ G and m,n ∈ Z we have

[gm, hn] = 1 =⇒ [g, h] = 1
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Theorem (C.–Clay 2023+)

Suppose that G,H are locally indicable simple groups, and C = 〈t〉 is an infinite cyclic

group.

Fix nonidentity g ∈ G, h ∈ H and integers m,n > 1 and the injections

φG(t) = gm and φH(t) = hn.

Then G ∗C H is locally indicable, not bi-orderable, and admits no nontrivial finite
quotient.

Example

It is well-known that the commutator subgroup F ′ of Thompson’s group F is simple and
locally indicable (in fact, it is bi-orderable).
Let K = F ′ ∗C F ′ defined as above for some infinite cyclic group C .
Elo(K) is not smooth.
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4. Time permitting...



The structure of cbers

•

•

•smooth

Definition
E is universal if every cber is Borel reducible
to E.

There is a unique universal cber up to Borel
reducibility, denoted by E∞.
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Universal cbers

Theorem (Dougherty–Jackson–Kechris ’94)

The shi� action F2 y 2F2
induces a universal countable Borel equivalence.

Theorem (Velickovic–Thomas ’99; Gao ’00)
The conjugacy action F2 y Sub(F2) induces a universal countable Borel equivalence relation.

Theorem (C.–Clay 2022)

Elo(F2) is a universal countable Borel equivalence relation.
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Universality of free products

Theorem (Vinogradov ’49)
If G and H are le�-orderable, then the free product G ∗H is le�-orderable.

Theorem (C.–Clay 2023+)

If G and H are le�-orderable groups, then Elo(G ∗H) is universal.

It uses the following:

Lemma (C.–Clay 2022)
If C ≤ G and C is convex in some le�-ordering of G and

for all g ∈ G gCg−1 ⊆ C =⇒ g ∈ C,

then Elo(C) ≤B Elo(G).
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Fundamental group of 3-manifolds

Theorem (C.–Clay 2023+)

If M is (the complement of a) knot (excluding the trivial knot), then Elo

(
π1(M)

)
is not

smooth.

We build a nonempty invariant closed subset of LO(π1(M)) consisting of non-Conradian
le�-orderings (whose orbits are necessarily infinite).

22 23



Fundamental group of 3-manifolds

Theorem (C.–Clay 2023+)

If M is (the complement of a) knot (excluding the trivial knot), then Elo

(
π1(M)

)
is not

smooth.

We build a nonempty invariant closed subset of LO(π1(M)) consisting of non-Conradian
le�-orderings (whose orbits are necessarily infinite).

22 23



Open questions

Open question

Is there a le�-orderable G such that E0 ≤B Elo(G) ≤B E∞.

Open question

Are there G,H such that Elo(G) and Elo(H) are incomparable.

Open question

Is there G such that Elo(G) is essentially free?
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Thank You!


